Nvidia GeForce RTX 3090 Founders Edition Review: Heir to the Titan Throne
|
Posts: 14,704
Threads: 9,636
Thanks Received: 9,085 in 7,235 posts
Thanks Given: 9,886
Joined: 12 September 18
31 December 20, 08:48
(This post was last modified: 31 December 20, 08:48 by harlan4096.)
Quote:
The GeForce RTX 3090 is a Titan-class card, with a bigger performance benefit than older GPUs, but minus a few professional features.
Our Verdict
Nvidia's GeForce RTX 3090 Founders Edition takes the crown as the fastest GPU around, but at twice the price of an RTX 3080. It's blazingly fast, comes with gobs of memory, and the Founders Edition is absolutely massive … and most gamers don't need it. We discuss price, performance, availability, power, and more in our in-depth review.
For- Fastest current graphics card, period
- 4K ultra at more than 60 fps
- 8K DLSS potential
- Good cooling and minimal noise
- Major architectural updates for the future
- Great for content creation tasks
Against- Extreme pricing for very modest gains
- Massive cooler won't fit in smaller builds
- Lacks certain Titan features
- Highest TGP for a single GPU ever (350W)
- Needs a 4K display, maybe even 8K
The Nvidia GeForce RTX 3090 Founders Edition now claims the top spot on our GPU benchmarks hierarchy, though where it lands on the best graphics cards is a more difficult question to answer. While the GeForce RTX 3080 kept with the existing pricing structure of the RTX 20-series, replacing the RTX 2080 Super at the $699 price point, the RTX 3090 sees the RTX 2080 Ti's $1200 launch price and raises it another $300. There's an alternative viewpoint, however: The GeForce RTX 3090 is also a replacement for the $2,500 Titan RTX, in which case it's a faster card that costs $1,000 less. Either way, you're going to need some deep pockets if you want to own Nvidia's new halo card.
We already have the Ampere architecture deep dive that details what makes the GeForce RTX 3090 tick. Start there if you want more information on how the 3090 and GA102 deliver new levels of performance. We'll cover the highlights here, but the simple answer is that Nvidia has gone with a smaller process node, more cores, faster memory … plus more power and a higher price. At 350W TGP (Total Graphics Power), this is by far the most power hungry consumer GPU Nvidia has ever released (not counting the dual-GPU cards). It's also the most expensive GeForce branded GPU ever (unless you count the dual-GPU GeForce GTX Titan Z, which I don't).
We have a few additional tests we're still trying to run before we render our final verdict (looking at you 8K, or at least 4K with DSR emulating 8K), so we won't have a final verdict just yet. We also have a few AIB (add-in board) partner cards that we'll be looking at in the coming days, once we've had some time to run all the tests and gather some data.
One thing we can't fully predict is availability, but our hunch is that it's not going to be great. It's actually more than a hunch, now, as Nvidia pre-emptively apologized yesterday for the limited availability of RTX 3090 cards (while at the same time confirming performance expectations). Ugh. Considering the RTX 3080 cards have been selling out as fast as inventory arrives, even though the RTX 3090 costs over twice as much … well, some people are paying nearly $1,500 for RTX 3080 cards. It's probably not going to be pleasant if you have your heart set on a 3090 and didn't put in a pre-order. Just give it some time, and things should eventually get sorted out. Cue mom: "Patience is a virtue!" Thanks, ma, but I'm still working on it.
The short summary of the GeForce RTX 3090 is much as you'd expect. It's theoretically about 20% faster than the RTX 3080 based on specs alone, with over twice the memory. The extra VRAM doesn't really matter much for most games unless you're running at 8K (maybe 5K), but it can prove useful for some professional workloads. The RTX 3090 also requires a beefy CPU to get the most out of the card (we'll be running some additional tests in the coming days to show that, but you can get some idea of what to expect from our RTX 3080 CPU scaling article). This is very much a GPU designed for 4K ultra gaming, and at those settings, it's 12% faster than the 3080 on average in our existing test suite, and 14% faster in our bonus test suite. Drop down to 1440p ultra, and the 3090 is only 8% faster than the 3080. If you're running at 1080p? Don't bother, seriously.
Now, let's dig into the specs and look at what's changed relative to other Nvidia GPUs.
GeForce RTX 3090 Architecture: Nearly a Full GA102 Again, our Ampere architecture goes into more detail on the various aspects of the new 30-series GPUs. There are a lot of changes relative to the previous Turing architecture, but here's the highlight reel.
First, GA102 uses Samsung's 8N process technology, which means more transistors in a smaller area than TU102. Looking strictly at overall transistor density, GA102 packs in 45 million transistors per square millimeter, whereas TU102 density is 'only' 24.7 million transistors per square millimeter. That's good, but clearly not as good as TSMC's N7 node: The larger GA100 chip used in Nvidia's A100 contains 65.4 million transistors per square millimeter. Also, AMD's Navi 10 has 41 million transistors per square mm, so Nvidia has at least matched that level of density — comparing across architectures is definitely looking at apples and oranges, though.
Moving on, the GeForce RTX 3090 uses a nearly complete GA102 chip. Of the 84 potential SMs (streaming multiprocessors), only two are disabled. That suggests either the yields are very good … or Nvidia isn't planning to sell nearly as many 3090 chips as 3080 chips. We suspect the second option is closer to the truth, and actual yields are a closely guarded secret these days. The 3090 also has seven GPCs (graphics processing clusters), and the ROPs (render outputs) are now part of the GPC instead of the memory controller, giving the 3090 112 ROPS.
Perhaps a bigger change is that the GeForce RTX 3090 comes equipped with 24GB of GDDR6X memory, this time clocked at 19.5 Gbps (compared to 19 Gbps on the 3080). This is accomplished by enabling the final two 32-bit memory controllers on GA102, and then running 24 chips in half-width 16-bit interface mode. That also means the GDDR6X chips are located on both sides of the PCB (printed circuit board), whereas the RTX 3080 only has memory on the same side as the GPU. There's certainly a question of how much this affects GDDR6X memory temperatures, particularly when half the VRAM isn't actively cooled.
However, at present, we don't have a way to measure the GDDR6X chip temperatures.
...
Continue Reading
|
Users browsing this thread: 1 Guest(s)
|
Welcome
|
You have to register before you can post on our site.
|
Online Staff
|
There are no staff members currently online. |
|

|