Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
AV-Comparatives: Real-World Protection Test February-May 2022
#1
Bug 
Quote:
[Image: avc-logo.png]

Real-World Protection Test February-May 2022

IntroductionMalicious software poses an ever-increasing threat, not only due to the number of malware programs increasing, but also due to the nature of the threats. Infection vectors are changing from simple file-based methods to distribution via the Internet. Malware is increasingly focusing on users, e.g. by deceiving them into visiting infected web pages, installing rogue/malicious software or opening emails with malicious attachments. The scope of protection offered by antivirus programs is extended by the inclusion of e.g. URL-blockers, content filtering, cloud reputation systems, ML-based static and dynamic detections and user-friendly behavior-blockers. If these features are perfectly coordinated with the signature-based and heuristic detection, the protection provided against threats increases.

In this test, all protection features of the product can be used to prevent infection – not just signatures or heuristic file scanning. A suite can step in at any stage of the process – accessing the URL, downloading the file, formation of the file on the local hard drive, file access and file execution – to protect the PC.

This means that the test achieves the most realistic way of determining how well the security product protects the PC. Because all of a suite’s components can be used to protect the PC, it is possible for a product to score well in the test by having e.g. very good behavioral protection, but a weak URL blocker. However, we would recommend that all parts of a product should be as effective as possible. It should be borne in mind that not all malware enters computer systems via the Internet, and that e.g. a URL blocker is ineffective against malware introduced to a PC via a USB flash drive or over the local area network.

In spite of these technologies, it remains very important that also conventional and non-cloud features such as the signature-based and heuristic detection abilities of antivirus programs continue to be tested. Even with all the protection features available, the growing frequency of zero-day attacks means that some computers will inevitably become infected. As signatures can be updated, they provide the opportunity to recognize and remove malware which was initially missed by the security software. Other protection technologies often offer no means of checking existing data stores for already-infected files, which can be found on the file servers of many companies. Those security layers should be understood as an addition to good detection rates, not as a replacement.

The Real-World Protection test is a joint project of AV-Comparatives and the University of Innsbruck’s Faculty of Computer Science and Quality Engineering. It is partially funded by the Republic of Austria.

The methodology of our Real-World Protection Test has received the following awards and certifications, including:
  • Constantinus Award – given by the Austrian government
  • Cluster Award – given by the Standortagentur Tirol – Tyrolean government
  • eAward – given by report.at (Magazine for Computer Science) and the Office of the Federal Chancellor
  • Innovationspreis IT – “Best Of” – given by Initiative Mittelstand Germany
Test Procedure

Testing dozens of antivirus products with hundreds of URLs each per day is a great deal of work, which cannot be done manually (as it would involve visiting thousands of websites in parallel), so it is necessary to use some sort of automation.

Lab Setup

Every potential test-case to be used in the test is run and analyzed on a clean machine without antivirus software, to ensure that it is a suitable candidate. If the malware meets these criteria, the source URL is added to the list to be tested with security products. Any test cases which turn out not to be appropriate are excluded from the test set.

Every security program to be tested is installed on its own test computer. All computers are connected to the Internet. Each system is manually updated every day, and each product is updated before every single test case. Each test PC has its own external IP address. We make special arrangements with ISPs to ensure a stable Internet connection for each PC, and take the necessary precautions (with specially configured firewalls etc.) not to harm other computers (i.e. not to cause outbreaks).

Software

The tests were performed under a fully patched Microsoft Windows 10 64-Bit. The use of up-to-date third-party software and an updated Microsoft Windows 10 64-Bit makes it very hard to find exploits in-the-field. Users should always keep their systems and applications up-to-date, in order to minimize the risk of being infected through exploits which use unpatched software vulnerabilities.

Settings

Our Real-World Protection Test aims to simulate real-world conditions as experienced every day by users. If user interactions are shown, we choose “Allow” or equivalent. If the product protects the system anyway, we count the malware as blocked, even though we allow the program to run when the user is asked to make a decision. If the system is compromised, we count it as user-dependent. We consider “protection” to mean that the system is not compromised. This means that the malware is not running (or is removed/terminated) and there are no significant/malicious system changes. An outbound-firewall alert about a running malware process, which asks whether or not to block traffic from the users’ workstation to the Internet, is too little, too late and not considered by us to be protection.

Preparation for every testing day

Every morning, any available security software updates are manually downloaded and installed. Before each test case is carried out, the products have some time to download and install automatically newer updates which have just been released, as well as to load their protection modules (which in several cases takes some minutes). If a major signature update for a product is made available during the day, but fails to download/install before each test case starts, the product will at least have the signatures that were available at the start of the day. This replicates the situation of an ordinary user in the real world.

Testing Cycle for each malicious URL

Before browsing to each new malicious URL we update the programs/signatures (as described above). New major product versions (i.e. the first digit of the build number is different) are installed once at the beginning of the month, which is why in each monthly report we only give the main product version number.

Our test software monitors the PC, so that any changes made by the malware will be recorded. Furthermore, the recognition algorithms check whether the antivirus program detects the malware. After each test case the machine is reset to its clean state.

Protection

Security products should protect the user’s PC and ideally, hinder malware from executing and perform any actions. It is not very important at which stage the protection takes place. It could be while browsing to the website (e.g. protection through URL Blocker), while an exploit tries to run, while the file is being downloaded/created or when the malware is executed (either by the exploit or by the user). After the malware is executed (if not blocked before), we wait several minutes for malicious actions and to give e.g. behavior-blockers time to react and remedy actions performed by the malware. If the malware is not detected and the system is indeed infected/compromised (i.e. not all actions were remediated), the process goes to “System Compromised”. If a user interaction is required and it is up to the user to decide if something is malicious, and in the case of the worst user decision the system gets compromised, we rate this as “user-dependent”. Because of this, the yellow bars in the results graph can be interpreted either as protected or not protected (it’s up to each individual user to decide what he/she would probably do in that situation).

Due to the dynamic nature of the test, i.e. mimicking real-world conditions, and because of the way several different technologies (such as cloud scanners, reputation services, etc.) work, it is a matter of fact that such tests cannot be repeated or replicated in the way that e.g. static detection rate tests can.

Anyway, we log as much data as reasonably possible to support our findings and results. Vendors are invited to provide useful log functions in their products that can provide the additional data they want in the event of disputes. After each testing month, manufacturers are given the opportunity to dispute our conclusion about the compromised cases, so that we can recheck if there were maybe some problems in the automation or with our analysis of the results.

In the case of cloud products, we can only consider the results that the products achieved in our lab at the time of testing; sometimes the cloud services provided by the security vendors are down due to faults or maintenance downtime by the vendors, but these cloud-downtimes are often not disclosed to the users by the vendors. This is also a reason why products relying too heavily on cloud services (and not making use of local heuristics, behavior blockers, etc.) can be risky, as in such cases the security provided by the products can decrease significantly. Cloud signatures/reputation should be implemented in the products to complement the other local/offline protection features, but not replace them completely, as e.g. offline cloud services would mean the PCs are being exposed to higher risks.

Testcases

We aim to use visible and relevant malicious websites/malware that are currently out there, and present a risk to ordinary users. We usually try to include as many working drive-by exploits as we find – these are usually well covered by practically all major security products, which may be one reason why the scores look relatively high. The rest are URLs that point directly to malware executables; this causes the malware file to be downloaded, thus replicating a scenario in which the user is tricked by social engineering into following links in spam mails or websites, or installing some Trojan or other malicious software.
We use our own crawling system to search continuously for malicious sites and extract malicious URLs (including spammed malicious links). We also search manually for malicious URLs.

In this kind of testing, it is very important to use enough test cases. If an insufficient number of samples are used in comparative tests, differences in results may not indicate actual differences in protective capabilities among the tested products. Our tests use more test cases (samples) per product and month than any similar test performed by other testing labs. Because of the higher statistical significance this achieves, we consider all the products in each results cluster to be equally effective, assuming that they have a false-positives rate below the industry average. Read more in the following paper.
...
Full Report
[-] The following 1 user says Thank You to harlan4096 for this post:
  • dhruv2193
Reply
#2
Very good and surprising results for Malwarebytes- better than Kaspersky.
[-] The following 1 user says Thank You to dhruv2193 for this post:
  • harlan4096
Reply
#3
Wink 
The problem with such a high score (beating K.) is that got it at the cost of so many false positives: 44 <> 2
[-] The following 1 user says Thank You to harlan4096 for this post:
  • dhruv2193
Reply
#4
(15 June 22, 09:12)harlan4096 Wrote: The problem with such a high score (beating K.) is that got it at the cost of so many false positives: 44 <> 2

Yes, right. Did not see that. Mbam would be better for a medium- high knowledge user but not for a novice in this case.
[-] The following 1 user says Thank You to dhruv2193 for this post:
  • harlan4096
Reply


Forum Jump:


Users browsing this thread: 1 Guest(s)
[-]
Welcome
You have to register before you can post on our site.

Username/Email:


Password:





[-]
Recent Posts
AWZ Screen Recorder
AWZ Screen Recorder ...zevish — 11:05
Website X5 Go 2024.1
Website X5 Go 2024.1...zevish — 09:32
Apple's rules to allow third-party app ...
Apple has announ...alison30 — 09:28
Intel: Microsoft AI PCs need a Copilot K...
Microsoft hopes th...harlan4096 — 08:55
Synchredible 8 Professional Edition v8.2...
          Synchredib...zevish — 08:54

[-]
Birthdays
Today's Birthdays
No birthdays today.
Upcoming Birthdays
No upcoming birthdays.

[-]
Online Staff
There are no staff members currently online.

>